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Abstract 
The unsteady-state model of the heliospheric current sheet of the finite thickness is suggested. The model generally 
includes all three components of the magnetic field. A difference of the suggested model from the standard one 
consists in the presence of the component of the magnetic field normal to the current sheet. The normal to the 
current sheet component of the magnetic field is connected with the unsteady radial component on the source 
surface of the heliospheric magnetic field. The effective thickness is defined by change of the tilt angle of the 
current sheet on the source surface during the solar rotation. The estimation of parameters of the model is based on 
calculations of the magnetic field on source surface within the potential approach (the model of Stanford University, 
USA). The model can be used in the theoretical studies of the galactic cosmic ray modulation in the heliosphere. 
 

I. Introduction 
The integral part of the modern model of the 
heliosphere is the heliospheric current sheet (HCS) - 
a surface on which there is a change of the direction 
of the heliospheric magnetic field (HMF). The HMF 
is usually described in the framework of Parker 
structure, which in the heliocentric inertial 
(nonrotational) spherical system of coordinates (K) 
includes a radial and azimuthal components , , 
connected by the relation: 
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where ω  is the angular velocity of the Sun,  is the 
velocity of the solar wind. 
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The radial magnetic field component is set at 
some distance  from the Sun – on the source 
surface (SS). Thus, if 

0r
0),( =Φ trr  is the equation of 

the HCS, the traditional form of the HMF description 
everywhere in the heliosphere is given by expression: 
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where ),( trВm rr
 is the two-component monopol 

Parker HMF, directed everywhere out of the Sun and 
H  is the Heaviside function. The equation (2) 
describes the HMF with the infinitely thin HCS (the 
mathematical surface). Such form of the description 
reflects the most essential properties of the "real" 
HCS defined according to measurements - its 
thickness is the least physical scale in the heliosphere 
for the galactic cosmic ray (GCR) particles. 
However, due to changes in form of the HCS in the 
consecutive solar rotations, the effective geometrical 
and physical characteristics of the HMF may differ 
significantly from those described by (2). 

For the greater part of the 11-year solar 
activity cycle the HCS surface in the heliosphere is 
rather complicated. Often therefore it is approximated 
as a surface resulting from the reflection to the 
heliosphere of the great circle on SS, inclined by 
some tilt  to the equator. 

Here  is the maximum and minimum HCS 
latitudes on the SS. Coordinates of the large circle are 
linked by the simple relation 
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)sin(2/ ϕαπθ tgarctg−= . Then the HCS surface 
at any distance r can be described as 

)~sin(2/ ϕαπθ tgarctg−= , where 
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usually called tilted current sheet (TCS) model. It is 
widely used for the HМF description during the 
periods of low solar activity, when the tilt is small 
( )(tα <30o). The specification of HMF in the 
approximation of the TCS model corresponds to the 
dipole approximation. 

The HCS in the TCS model is considered 
within several years near solar activity minimum as a 
steady structure with unique changing parameter – 
the tilt angle of the current sheet. The question of its 
stability is natural. From the point of view of the 
МHD theory [1] for the steady HCS the normal to it 
HMF component is necessary, as it provides the 
electric field maintaining the current, 

cBVE sw /
rrr

×−= . From the more general 
considerations [2-5] the presence of the normal to 
HCS component magnetic field is physically more 
natural, than its absence. 

In [6] we estimated the normal component 
of the magnetic field that can be expected from the 
observed movement of HCS on the SS. Another 
physical reason for the occurrence of the normal to 
the HCS of the heliospheric magnetic field 
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components, which can be investigated within the 
limits of simple MHD approach is the unsteady tilt 
angle of the sheet. The tilt of the sheet varies in the 
solar activity cycle in rather wide limits 
( ). The change of the tilt results in 
unsteady radial HMF component on SS, which, in 
turn, results in the induction of the normal component 
of the HMF. This case is considered below. 

oo t 75)(0 ≤≤ α

 
II. The magnetic field on the source surface 
The HMF is defined as the decision of the МHD 
equations in the assumption of its full freezing in the 
plasma of a solar wind [2,3]: 

.)(;0 BV
t

B
B

rr
r

rr
××∇=

∂

∂
=∇   (3) 

In the specific case rreVV rr
= ,  the 

decision of (3) is well-known [3] and may be written 
as: 
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From (4) it follows that the components of the HMF 
in the heliosphere are determined by its values on the 
SS. 

For the HMF analysis on SS it is convenient 
to use a combination of the equations (3), which may 
be written as in [3]: 
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The solution of the equation (5) is divergence-free. 
Time derivative of the radial HMF component is 
convenient to present as the sum: 
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where the first term on the right is connected with the 
unsteady-state in the system of coordinates rotating 
with the Sun (Kc), and the second term describes the 
contribution from rotation in the K system. 
Substituting (6) in (5) we receive the equation where 
all variables are related to Kc system: 
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where ϕB~  is an azimuthal component in motionless 
K system. 

In the useful K′ system with axis OX′=-OZc, 
OY′=OYc, OZ′=OXc the first equation (7) becomes 
simpler: 
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As the HCS on SS is a mathematical line, in the 
simple case of the homogeneous distribution of the 
radial HMF component within each hemisphere it 
may be written as: 
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where  is a constant, 0B )(tα  is the instantaneous 
value of the tilt at the moment t . Substituting (9) in 
(8) results in 
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)2/)('()2/)('((sin παϕδπαϕ −−−−× ttsign , 
where δ  is the delta-function and 'ϕ  is measured 
from axis OX′. The decision of (10) is as follows: 
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The dependence of the ),'( tf ϕ  on the angular 
variable for the case when the tilt angle of the HCS 
varies from o12)0( 1 == αα  to  is 
presented in the top panel of Fig.1. 

oT 48)( 2 == αα

 

 
   Fig.1. 
 
The middle and lower panels show the dependence of 
the ),'( tf ϕ  on time at 'ϕ  and , 
respectively. 

o180'+ϕ

The tilt angle of the HCS )(tα  is defined on 
the time scale equal to the period of solar rotation Т, 
therefore it is interesting to consider the time 
averages of (9) and (11) for the solar rotation. As a 
specific )(tα  we use physically clear and simple 
model when )(tα  increases with constant 
acceleration during the first half of solar rotation and 
then decreases with constant deceleration during the 
second half, i.e. 
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Then the average components on the source surface 
can expressed as: 
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where the signs correspond to 2/)(' παϕ += t  and 
2/3)(' παϕ += t , respectively, and t~  is a relative 

time of passage of the current sheet through any 
angular coordinate 'ϕ . It can be expressed as: 
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where  .12/'' απϕϕ −−=∆
Because of (7) the averaged HMF components on the 
SS in the K system may be written as: 
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where the coordinate ϕ  is linked with the coordinate 
θ  by the relation )sin)~((2/ ϕαπθ ⋅−= ttgarctg .  

The HMF components in the heliosphere are 
determined according to (4). From expressions (15) it 
follows that for  the field lines of the 
HМF within the HCS leave the SS and then come 
back. For , on the contrary, the field lines 
come from the infinity to SS and then come back. 
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As the time averaging (13) switches with the 
divergence operation, 
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the average components of the HMF are divergence-
free. 
 
III. The parameters of the model and 
characteristic behavior of the HMF 
The normal to the HCS components of the HMF are 
proportional to ωα /〉〈 & . This parameter can be 
estimated using the Wilcox Solar Observatory (WSO) 
model based on the measurements of the 
photospheric magnetic field and defining in the 
potential МHD approach the HCS tilt angle for each 
solar rotation (the site http://wso.stanford.edu. 
Tilt.html). In Fig. 2. the top panel presents the time 
behavior of the tilt angle . The middle panel of 
Fig.2. shows the time dependence of the parameter 

- the angle between of the magnetic dipole and 

the axis of rotation of the Sun. Note, that  is equal 
to 

tα

dα

dα
α  used in (9-15). In the bottom panel the time 

behavior  for the last three 11-year solar 
activity cycles is shown. It can be seen that the 
maximum value does not exceed 0.015 with the 
characteristic average value . Thus, the 
ratio of the normal to the HCS components of the 
HMF to its radial component on SS is less than one 
percent, according to measurements. 
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   Fig.2. 
 

For more detailed illustration of the angular 
distribution of the HMF components within the 
effective thickness of the HCS, we use  
and much longer 

o30=〉〈α
1.0/ =〉〈 ωα& . In Fig. 3. the 

latitudinal distributions of the HMF components on 
SS in relative units are presented. For  the 
distribution of only the second term in (15) is shown. 
The azimuth angle is taken close to 

ϕB

2/π , where the 
- component is maximal and  is very small.  θB ϕB

 
   Fig.3. 
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Fig. 3. clearly shows that the ratio of the normal 
component to the tangential one strongly varies 
within the thickness of the HCS. At 〉〈= αα )(t  there 
is only the normal component. The ratio of the 
maximum value of the normal component to the 
maximum value of the tangential component is (3-
4)× , as mentioned earlier on the basis of the 
measurement data.  

310−

Consistently with (15) on SS each 
component of HMF has a characteristic angular 
dependence within the HCS. Fig.4. presents the 
angular distribution of all three components of HMF 
on the SS without azimuthal component due to solar 
rotation. 

 
   Fig. 4. 
 
IV. Discussion 
In spite of relatively small normal to the HCS 
component, its presence can lead to considerable 
effects in the transportation of the GCR particles 
from one magnetic hemisphere to another. Due to its 
slower reduction with the radial distance (~1/r) when 
compared with that of the radial component (~1/r2), 
the role of the normal component of HMF 
significantly increases in the outer heliosphere [6]. It 
can lead the essential changes in the GCR 
modulation, as the effects of drift along of the HCS 
are sensitive to the normal component of the HMF. 

The analysis of the "real" forms of the HCS 
on SS according to the WSO data shows, that the 
modelling description of the HCS form by means of 
the tilt angle does not fully reflect the evolution of the 
"real" form of the HCS in time [7]. The change from 
rotation to rotation of the mean HCS polar angle, 
according to [7], greatly exceeds the change in tilt 
angle of the HCS. Consequently the normal 
component of the HMF increases. Therefore, the 

description of change in the HCS by the change of its 
form from one rotation to the next one is more 
promising. 
 
V. Conclusions 
1. Based on the traditional model of tilted current 
sheet the analitical heliospheric current sheet model 
with the finite thickness and all three components of 
the magnetic field is constructed. The procedure of 
averaging the instantaneous magnetic field over the 
time to produce the average heliospheric current 
sheet for the solar rotation is introduced. 
2. When using the parameters obtained from the 
Wilcox Solar Observatory data changes in the 
heliospheric magnetic field according to the present 
model are very small near the Sun, but should be 
greater at large heliospheric distances. 
3. The alternative model of the heliospheric current 
sheet with the finite thickness based on the change of 
its form from one solar rotation to the next one can be 
more promising for the studies of the modulation of 
the galactic cosmic rays. 
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